Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Sampling Multiple Edges Efficiently (2008.08032v4)

Published 18 Aug 2020 in cs.DS

Abstract: We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise $\epsilon$-close to the uniform distribution, in an \emph{amortized-efficient} fashion. We consider the adjacency list query model, where access to a graph $G$ is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let $n$ and $m$ denote the number of vertices and edges of $G$, respectively. Eden and Rosenbaum provided upper and lower bounds of $\Theta*(n/\sqrt m)$ for sampling a single edge in general graphs (where $O*(\cdot)$ suppresses $\textrm{poly}(1/\epsilon)$ and $\textrm{poly}(\log n)$ dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples $q$ in advance, has an overall cost that is sublinear in $q$, namely, $O*(\sqrt q \cdot(n/\sqrt m))$, which is strictly preferable to $O*(q\cdot (n/\sqrt m))$ cost resulting from $q$ invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, T\v{e}tek and Thorup (arXiv, preprint) proved that this bound is essentially optimal.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.