Sampling Multiple Edges Efficiently (2008.08032v4)
Abstract: We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise $\epsilon$-close to the uniform distribution, in an \emph{amortized-efficient} fashion. We consider the adjacency list query model, where access to a graph $G$ is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let $n$ and $m$ denote the number of vertices and edges of $G$, respectively. Eden and Rosenbaum provided upper and lower bounds of $\Theta*(n/\sqrt m)$ for sampling a single edge in general graphs (where $O*(\cdot)$ suppresses $\textrm{poly}(1/\epsilon)$ and $\textrm{poly}(\log n)$ dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples $q$ in advance, has an overall cost that is sublinear in $q$, namely, $O*(\sqrt q \cdot(n/\sqrt m))$, which is strictly preferable to $O*(q\cdot (n/\sqrt m))$ cost resulting from $q$ invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, T\v{e}tek and Thorup (arXiv, preprint) proved that this bound is essentially optimal.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.