Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the Convergence of Consensus Algorithms with Markovian Noise and Gradient Bias (2008.07841v3)

Published 18 Aug 2020 in math.OC and stat.ML

Abstract: This paper presents a finite time convergence analysis for a decentralized stochastic approximation (SA) scheme. The scheme generalizes several algorithms for decentralized machine learning and multi-agent reinforcement learning. Our proof technique involves separating the iterates into their respective consensual parts and consensus error. The consensus error is bounded in terms of the stationarity of the consensual part, while the updates of the consensual part can be analyzed as a perturbed SA scheme. Under the Markovian noise and time varying communication graph assumptions, the decentralized SA scheme has an expected convergence rate of ${\cal O}(\log T/ \sqrt{T} )$, where $T$ is the iteration number, in terms of squared norms of gradient for nonlinear SA with smooth but non-convex cost function. This rate is comparable to the best known performances of SA in a centralized setting with a non-convex potential function.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)