Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mastering Large Scale Multi-label Image Recognition with high efficiency overCamera trap images (2008.07828v1)

Published 18 Aug 2020 in cs.CV

Abstract: Camera traps are crucial in biodiversity motivated studies, however dealing with large number of images while annotating these data sets is a tedious and time consuming task. To speed up this process, Machine Learning approaches are a reasonable asset. In this article we are proposing an easy, accessible, light-weight, fast and efficient approach based on our winning submission to the "Hakuna Ma-data - Serengeti Wildlife Identification challenge". Our system achieved an Accuracy of 97% and outperformed the human level performance. We show that, given relatively large data sets, it is effective to look at each image only once with little or no augmentation. By utilizing such a simple, yet effective baseline we were able to avoid over-fitting without extensive regularization techniques and to train a top scoring system on a very limited hardware featuring single GPU (1080Ti) despite the large training set (6.7M images and 6TB).

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.