Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mesh Guided One-shot Face Reenactment using Graph Convolutional Networks (2008.07783v2)

Published 18 Aug 2020 in cs.CV

Abstract: Face reenactment aims to animate a source face image to a different pose and expression provided by a driving image. Existing approaches are either designed for a specific identity, or suffer from the identity preservation problem in the one-shot or few-shot scenarios. In this paper, we introduce a method for one-shot face reenactment, which uses the reconstructed 3D meshes (i.e., the source mesh and driving mesh) as guidance to learn the optical flow needed for the reenacted face synthesis. Technically, we explicitly exclude the driving face's identity information in the reconstructed driving mesh. In this way, our network can focus on the motion estimation for the source face without the interference of driving face shape. We propose a motion net to learn the face motion, which is an asymmetric autoencoder. The encoder is a graph convolutional network (GCN) that learns a latent motion vector from the meshes, and the decoder serves to produce an optical flow image from the latent vector with CNNs. Compared to previous methods using sparse keypoints to guide the optical flow learning, our motion net learns the optical flow directly from 3D dense meshes, which provide the detailed shape and pose information for the optical flow, so it can achieve more accurate expression and pose on the reenacted face. Extensive experiments show that our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube