Papers
Topics
Authors
Recent
2000 character limit reached

Resolving Intent Ambiguities by Retrieving Discriminative Clarifying Questions (2008.07559v2)

Published 17 Aug 2020 in cs.AI, cs.CL, and cs.LG

Abstract: Task oriented Dialogue Systems generally employ intent detection systems in order to map user queries to a set of pre-defined intents. However, user queries appearing in natural language can be easily ambiguous and hence such a direct mapping might not be straightforward harming intent detection and eventually the overall performance of a dialogue system. Moreover, acquiring domain-specific clarification questions is costly. In order to disambiguate queries which are ambiguous between two intents, we propose a novel method of generating discriminative questions using a simple rule based system which can take advantage of any question generation system without requiring annotated data of clarification questions. Our approach aims at discrimination between two intents but can be easily extended to clarification over multiple intents. Seeking clarification from the user to classify user intents not only helps understand the user intent effectively, but also reduces the roboticity of the conversation and makes the interaction considerably natural.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.