Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

White blood cell classification (2008.07181v2)

Published 17 Aug 2020 in cs.CV

Abstract: This paper proposes a novel automatic classification framework for the recognition of five types of white blood cells. Segmenting complete white blood cells from blood smears images and extracting advantageous features from them remain challenging tasks in the classification of white blood cells. Therefore, we present an adaptive threshold segmentation method to deal with blood smears images with non-uniform color and uneven illumination, which is designed based on color space information and threshold segmentation. Subsequently, after successfully separating the white blood cell from the blood smear image, a large number of nonlinear features including geometrical, color and texture features are extracted. Nevertheless, redundant features can affect the classification speed and efficiency, and in view of that, a feature selection algorithm based on classification and regression trees (CART) is designed. Through in-depth analysis of the nonlinear relationship between features, the irrelevant and redundant features are successfully removed from the initial nonlinear features. Afterwards, the selected prominent features are fed into particle swarm optimization support vector machine (PSO-SVM) classifier to recognize the types of the white blood cells. Finally, to evaluate the performance of the proposed white blood cell classification methodology, we build a white blood cell data set containing 500 blood smear images for experiments. By comparing with the ground truth obtained manually, the proposed segmentation method achieves an average of 95.98% and 97.57% dice similarity for segmented nucleus and cell regions respectively. Furthermore, the proposed methodology achieves 99.76% classification accuracy, which well demonstrates its effectiveness.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.