Papers
Topics
Authors
Recent
2000 character limit reached

Detection of Gait Abnormalities caused by Neurological Disorders (2008.06861v1)

Published 16 Aug 2020 in cs.CV, cs.MM, and eess.IV

Abstract: In this paper, we leverage gait to potentially detect some of the important neurological disorders, namely Parkinson's disease, Diplegia, Hemiplegia, and Huntington's Chorea. Persons with these neurological disorders often have a very abnormal gait, which motivates us to target gait for their potential detection. Some of the abnormalities involve the circumduction of legs, forward-bending, involuntary movements, etc. To detect such abnormalities in gait, we develop gait features from the key-points of the human pose, namely shoulders, elbows, hips, knees, ankles, etc. To evaluate the effectiveness of our gait features in detecting the abnormalities related to these diseases, we build a synthetic video dataset of persons mimicking the gait of persons with such disorders, considering the difficulty in finding a sufficient number of people with these disorders. We name it \textit{NeuroSynGait} video dataset. Experiments demonstrated that our gait features were indeed successful in detecting these abnormalities.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.