Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Survey: Geometric Foundations of Data Reduction (2008.06853v2)

Published 16 Aug 2020 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: This survey is written in summer, 2016. The purpose of this survey is to briefly introduce nonlinear dimensionality reduction (NLDR) in data reduction. The first two NLDR were respectively published in Science in 2000 in which they solve the similar reduction problem of high-dimensional data endowed with the intrinsic nonlinear structure. The intrinsic nonlinear structure is always interpreted as a concept in manifolds from geometry and topology in theoretical mathematics by computer scientists and theoretical physicists. In 2001, the concept of Manifold Learning first appears as an NLDR method called Laplacian Eigenmaps. In a typical manifold learning setup, the data set, also called the observation set, is distributed on or near a low dimensional manifold M embedded in RD, which yields that each observation has a D-dimensional representation. The goal of manifold learning is to reduce these observations as a compact lower-dimensional representation based on the geometric information. The reduction procedure is called the spectral manifold learning. In this paper, we derive each spectral manifold learning with the matrix and operator representation, and we then discuss the convergence behavior of each method in a geometric uniform language. Hence, the survey is named Geometric Foundations of Data Reduction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)