Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field Control/Game in Continuous Time (2008.06845v1)

Published 16 Aug 2020 in math.OC and stat.ML

Abstract: Reinforcement learning is a powerful tool to learn the optimal policy of possibly multiple agents by interacting with the environment. As the number of agents grow to be very large, the system can be approximated by a mean-field problem. Therefore, it has motivated new research directions for mean-field control (MFC) and mean-field game (MFG). In this paper, we study the policy gradient method for the linear-quadratic mean-field control and game, where we assume each agent has identical linear state transitions and quadratic cost functions. While most of the recent works on policy gradient for MFC and MFG are based on discrete-time models, we focus on the continuous-time models where some analyzing techniques can be interesting to the readers. For both MFC and MFG, we provide policy gradient update and show that it converges to the optimal solution at a linear rate, which is verified by a synthetic simulation. For MFG, we also provide sufficient conditions for the existence and uniqueness of the Nash equilibrium.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.