Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

We Learn Better Road Pothole Detection: from Attention Aggregation to Adversarial Domain Adaptation (2008.06840v2)

Published 16 Aug 2020 in cs.CV and cs.RO

Abstract: Manual visual inspection performed by certified inspectors is still the main form of road pothole detection. This process is, however, not only tedious, time-consuming and costly, but also dangerous for the inspectors. Furthermore, the road pothole detection results are always subjective, because they depend entirely on the individual experience. Our recently introduced disparity (or inverse depth) transformation algorithm allows better discrimination between damaged and undamaged road areas, and it can be easily deployed to any semantic segmentation network for better road pothole detection results. To boost the performance, we propose a novel attention aggregation (AA) framework, which takes the advantages of different types of attention modules. In addition, we develop an effective training set augmentation technique based on adversarial domain adaptation, where the synthetic road RGB images and transformed road disparity (or inverse depth) images are generated to enhance the training of semantic segmentation networks. The experimental results demonstrate that, firstly, the transformed disparity (or inverse depth) images become more informative; secondly, AA-UNet and AA-RTFNet, our best performing implementations, respectively outperform all other state-of-the-art single-modal and data-fusion networks for road pothole detection; and finally, the training set augmentation technique based on adversarial domain adaptation not only improves the accuracy of the state-of-the-art semantic segmentation networks, but also accelerates their convergence.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.