Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cubature rules based on bivariate spline quasi-interpolation for weakly singular integrals (2008.06746v1)

Published 15 Aug 2020 in math.NA and cs.NA

Abstract: In this paper we present a new class of cubature rules with the aim of accurately integrating weakly singular double integrals. In particular we focus on those integrals coming from the discretization of Boundary Integral Equations for 3D Laplace boundary value problems, using a collocation method within the Isogeometric Analysis paradigm. In such setting the regular part of the integrand can be defined as the product of a tensor product B-spline and a general function. The rules are derived by using first the spline quasi-interpolation approach to approximate such function and then the extension of a well known algorithm for spline product to the bivariate setting. In this way efficiency is ensured, since the locality of any spline quasi-interpolation scheme is combined with the capability of an ad--hoc treatment of the B-spline factor. The numerical integration is performed on the whole support of the B-spline factor by exploiting inter-element continuity of the integrands

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.