Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Breaking Barriers: Maximizing Array Utilization for Compute In-Memory Fabrics (2008.06741v1)

Published 15 Aug 2020 in cs.AR and cs.ET

Abstract: Compute in-memory (CIM) is a promising technique that minimizes data transport, the primary performance bottleneck and energy cost of most data intensive applications. This has found wide-spread adoption in accelerating neural networks for machine learning applications. Utilizing a crossbar architecture with emerging non-volatile memories (eNVM) such as dense resistive random access memory (RRAM) or phase change random access memory (PCRAM), various forms of neural networks can be implemented to greatly reduce power and increase on chip memory capacity. However, compute in-memory faces its own limitations at both the circuit and the device levels. Although compute in-memory using the crossbar architecture can greatly reduce data transport, the rigid nature of these large fixed weight matrices forfeits the flexibility of traditional CMOS and SRAM based designs. In this work, we explore the different synchronization barriers that occur from the CIM constraints. Furthermore, we propose a new allocation algorithm and data flow based on input data distributions to maximize utilization and performance for compute-in memory based designs. We demonstrate a 7.47$\times$ performance improvement over a naive allocation method for CIM accelerators on ResNet18.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.