Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-supervised learning using teacher-student models for vocal melody extraction (2008.06358v1)

Published 14 Aug 2020 in eess.AS and cs.SD

Abstract: The lack of labeled data is a major obstacle in many music information retrieval tasks such as melody extraction, where labeling is extremely laborious or costly. Semi-supervised learning (SSL) provides a solution to alleviate the issue by leveraging a large amount of unlabeled data. In this paper, we propose an SSL method using teacher-student models for vocal melody extraction. The teacher model is pre-trained with labeled data and guides the student model to make identical predictions given unlabeled input in a self-training setting. We examine three setups of teacher-student models with different data augmentation schemes and loss functions. Also, considering the scarcity of labeled data in the test phase, we artificially generate large-scale testing data with pitch labels from unlabeled data using an analysis-synthesis method. The results show that the SSL method significantly increases the performance against supervised learning only and the improvement depends on the teacher-student models, the size of unlabeled data, the number of self-training iterations, and other training details. We also find that it is essential to ensure that the unlabeled audio has vocal parts. Finally, we show that the proposed SSL method enables a baseline convolutional recurrent neural network model to achieve performance comparable to state-of-the-arts.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.