Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Feature Selection Methods for Cost-Constrained Classification in Random Forests (2008.06298v2)

Published 14 Aug 2020 in stat.ML and cs.LG

Abstract: Cost-sensitive feature selection describes a feature selection problem, where features raise individual costs for inclusion in a model. These costs allow to incorporate disfavored aspects of features, e.g. failure rates of as measuring device, or patient harm, in the model selection process. Random Forests define a particularly challenging problem for feature selection, as features are generally entangled in an ensemble of multiple trees, which makes a post hoc removal of features infeasible. Feature selection methods therefore often either focus on simple pre-filtering methods, or require many Random Forest evaluations along their optimization path, which drastically increases the computational complexity. To solve both issues, we propose Shallow Tree Selection, a novel fast and multivariate feature selection method that selects features from small tree structures. Additionally, we also adapt three standard feature selection algorithms for cost-sensitive learning by introducing a hyperparameter-controlled benefit-cost ratio criterion (BCR) for each method. In an extensive simulation study, we assess this criterion, and compare the proposed methods to multiple performance-based baseline alternatives on four artificial data settings and seven real-world data settings. We show that all methods using a hyperparameterized BCR criterion outperform the baseline alternatives. In a direct comparison between the proposed methods, each method indicates strengths in certain settings, but no one-fits-all solution exists. On a global average, we could identify preferable choices among our BCR based methods. Nevertheless, we conclude that a practical analysis should never rely on a single method only, but always compare different approaches to obtain the best results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.