Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Speaker Adaptation for WaveNet-based Neural Vocoders (2008.06182v1)

Published 14 Aug 2020 in eess.AS

Abstract: In this paper, we propose an online speaker adaptation method for WaveNet-based neural vocoders in order to improve their performance on speaker-independent waveform generation. In this method, a speaker encoder is first constructed using a large speaker-verification dataset which can extract a speaker embedding vector from an utterance pronounced by an arbitrary speaker. At the training stage, a speaker-aware WaveNet vocoder is then built using a multi-speaker dataset which adopts both acoustic feature sequences and speaker embedding vectors as conditions.At the generation stage, we first feed the acoustic feature sequence from a test speaker into the speaker encoder to obtain the speaker embedding vector of the utterance. Then, both the speaker embedding vector and acoustic features pass the speaker-aware WaveNet vocoder to reconstruct speech waveforms. Experimental results demonstrate that our method can achieve a better objective and subjective performance on reconstructing waveforms of unseen speakers than the conventional speaker-independent WaveNet vocoder.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.