Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

End-to-End Trainable Self-Attentive Shallow Network for Text-Independent Speaker Verification (2008.06146v1)

Published 14 Aug 2020 in eess.AS, cs.CL, and cs.SD

Abstract: Generalized end-to-end (GE2E) model is widely used in speaker verification (SV) fields due to its expandability and generality regardless of specific languages. However, the long-short term memory (LSTM) based on GE2E has two limitations: First, the embedding of GE2E suffers from vanishing gradient, which leads to performance degradation for very long input sequences. Secondly, utterances are not represented as a properly fixed dimensional vector. In this paper, to overcome issues mentioned above, we propose a novel framework for SV, end-to-end trainable self-attentive shallow network (SASN), incorporating a time-delay neural network (TDNN) and a self-attentive pooling mechanism based on the self-attentive x-vector system during an utterance embedding phase. We demonstrate that the proposed model is highly efficient, and provides more accurate speaker verification than GE2E. For VCTK dataset, with just less than half the size of GE2E, the proposed model showed significant performance improvement over GE2E of about 63%, 67%, and 85% in EER (Equal error rate), DCF (Detection cost function), and AUC (Area under the curve), respectively. Notably, when the input length becomes longer, the DCF score improvement of the proposed model is about 17 times greater than that of GE2E.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube