Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analytical bounds on the local Lipschitz constants of affine-ReLU functions (2008.06141v1)

Published 14 Aug 2020 in cs.LG and stat.ML

Abstract: In this paper, we determine analytical bounds on the local Lipschitz constants of of affine functions composed with rectified linear units (ReLUs). Affine-ReLU functions represent a widely used layer in deep neural networks, due to the fact that convolution, fully-connected, and normalization functions are all affine, and are often followed by a ReLU activation function. Using an analytical approach, we mathematically determine upper bounds on the local Lipschitz constant of an affine-ReLU function, show how these bounds can be combined to determine a bound on an entire network, and discuss how the bounds can be efficiently computed, even for larger layers and networks. We show several examples by applying our results to AlexNet, as well as several smaller networks based on the MNIST and CIFAR-10 datasets. The results show that our method produces tighter bounds than the standard conservative bound (i.e. the product of the spectral norms of the layers' linear matrices), especially for small perturbations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.