Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Small Towers Make Big Differences (2008.05808v1)

Published 13 Aug 2020 in cs.LG and stat.ML

Abstract: Multi-task learning aims at solving multiple machine learning tasks at the same time. A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal. In this paper, we provide some insights on understanding the trade-off between Pareto efficiency and generalization as a result of parameterization in multi-task deep learning models. As a multi-objective optimization problem, enough parameterization is needed for handling task conflicts in a constrained solution space; however, from a multi-task generalization perspective, over-parameterization undermines the benefit of learning a shared representation which helps harder tasks or tasks with limited training examples. A delicate balance between multi-task generalization and multi-objective optimization is therefore needed for finding a better trade-off between efficiency and generalization. To this end, we propose a method of under-parameterized self-auxiliaries for multi-task models to achieve the best of both worlds. It is task-agnostic and works with other multi-task learning algorithms. Empirical results show that small towers of under-parameterized self-auxiliaries can make big differences in improving Pareto efficiency in various multi-task applications.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.