Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SkeletonNet: A Topology-Preserving Solution for Learning Mesh Reconstruction of Object Surfaces from RGB Images (2008.05742v3)

Published 13 Aug 2020 in cs.CV

Abstract: This paper focuses on the challenging task of learning 3D object surface reconstructions from RGB images. Existingmethods achieve varying degrees of success by using different surface representations. However, they all have their own drawbacks,and cannot properly reconstruct the surface shapes of complex topologies, arguably due to a lack of constraints on the topologicalstructures in their learning frameworks. To this end, we propose to learn and use the topology-preserved, skeletal shape representationto assist the downstream task of object surface reconstruction from RGB images. Technically, we propose the novelSkeletonNetdesign that learns a volumetric representation of a skeleton via a bridged learning of a skeletal point set, where we use paralleldecoders each responsible for the learning of points on 1D skeletal curves and 2D skeletal sheets, as well as an efficient module ofglobally guided subvolume synthesis for a refined, high-resolution skeletal volume; we present a differentiablePoint2Voxellayer tomake SkeletonNet end-to-end and trainable. With the learned skeletal volumes, we propose two models, the Skeleton-Based GraphConvolutional Neural Network (SkeGCNN) and the Skeleton-Regularized Deep Implicit Surface Network (SkeDISN), which respectivelybuild upon and improve over the existing frameworks of explicit mesh deformation and implicit field learning for the downstream surfacereconstruction task. We conduct thorough experiments that verify the efficacy of our proposed SkeletonNet. SkeGCNN and SkeDISNoutperform existing methods as well, and they have their own merits when measured by different metrics. Additional results ingeneralized task settings further demonstrate the usefulness of our proposed methods. We have made both our implementation codeand the ShapeNet-Skeleton dataset publicly available at ble at https://github.com/tangjiapeng/SkeletonNet.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.