Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cut Sparsification of the Clique Beyond the Ramanujan Bound: A Separation of Cut Versus Spectral Sparsification (2008.05648v3)

Published 13 Aug 2020 in cs.DS, cs.DM, math.CO, and math.PR

Abstract: We prove that a random $d$-regular graph, with high probability, is a cut sparsifier of the clique with approximation error at most $\left(2\sqrt{\frac 2 \pi} + o_{n,d}(1)\right)/\sqrt d$, where $2\sqrt{\frac 2 \pi} = 1.595\ldots$ and $o_{n,d}(1)$ denotes an error term that depends on $n$ and $d$ and goes to zero if we first take the limit $n\rightarrow \infty$ and then the limit $d \rightarrow \infty$. This is established by analyzing linear-size cuts using techniques of Jagannath and Sen derived from ideas in statistical physics, and analyzing small cuts via martingale inequalities. We also prove new lower bounds on spectral sparsification of the clique. If $G$ is a spectral sparsifier of the clique and $G$ has average degree $d$, we prove that the approximation error is at least the "Ramanujan bound'' $(2-o_{n,d}(1))/\sqrt d$, which is met by $d$-regular Ramanujan graphs, provided that either the weighted adjacency matrix of $G$ is a (multiple of) a doubly stochastic matrix, or that $G$ satisfies a certain high "odd pseudo-girth" property. The first case can be seen as an "Alon-Boppana theorem for symmetric doubly stochastic matrices," showing that a symmetric doubly stochastic matrix with $dn$ non-zero entries has a non-trivial eigenvalue of magnitude at least $(2-o_{n,d}(1))/\sqrt d$; the second case generalizes a lower bound of Srivastava and Trevisan, which requires a large girth assumption. Together, these results imply a separation between spectral sparsification and cut sparsification. If $G$ is a random $\log n$-regular graph on $n$ vertices, we show that, with high probability, $G$ admits a (weighted subgraph) cut sparsifier of average degree $d$ and approximation error at most $(1.595\ldots + o_{n,d}(1))/\sqrt d$, while every (weighted subgraph) spectral sparsifier of $G$ having average degree $d$ has approximation error at least $(2-o_{n,d}(1))/\sqrt d$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.