Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reparametrization Invariance in non-parametric Causal Discovery (2008.05552v1)

Published 12 Aug 2020 in stat.ML and cs.LG

Abstract: Causal discovery estimates the underlying physical process that generates the observed data: does X cause Y or does Y cause X? Current methodologies use structural conditions to turn the causal query into a statistical query, when only observational data is available. But what if these statistical queries are sensitive to causal invariants? This study investigates one such invariant: the causal relationship between X and Y is invariant to the marginal distributions of X and Y. We propose an algorithm that uses a non-parametric estimator that is robust to changes in the marginal distributions. This way we may marginalize the marginals, and inspect what relationship is intrinsically there. The resulting causal estimator is competitive with current methodologies and has high emphasis on the uncertainty in the causal query; an aspect just as important as the query itself.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Martin Jørgensen (14 papers)
  2. Søren Hauberg (68 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.