Papers
Topics
Authors
Recent
2000 character limit reached

Non-Stochastic Control with Bandit Feedback (2008.05523v1)

Published 12 Aug 2020 in cs.LG, math.OC, and stat.ML

Abstract: We study the problem of controlling a linear dynamical system with adversarial perturbations where the only feedback available to the controller is the scalar loss, and the loss function itself is unknown. For this problem, with either a known or unknown system, we give an efficient sublinear regret algorithm. The main algorithmic difficulty is the dependence of the loss on past controls. To overcome this issue, we propose an efficient algorithm for the general setting of bandit convex optimization for loss functions with memory, which may be of independent interest.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.