Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dispersed Federated Learning: Vision, Taxonomy, and Future Directions (2008.05189v2)

Published 12 Aug 2020 in cs.DC

Abstract: The ongoing deployment of the Internet of Things (IoT)-based smart applications is spurring the adoption of machine learning as a key technology enabler. To overcome the privacy and overhead challenges of centralized machine learning, there has been a significant recent interest in the concept of federated learning. Federated learning offers on-device, privacy-preserving machine learning without the need to transfer end-devices data to a third party location. However, federated learning still has privacy concerns due to sensitive information inferring capability of the aggregation server using end-devices local learning models. Furthermore, the federated learning process might fail due to a failure in the aggregation server (e.g., due to a malicious attack or physical defect). Other than privacy and robustness issues, federated learning over IoT networks requires a significant amount of communication resources for training. To cope with these issues, we propose a novel concept of dispersed federated learning (DFL) that is based on the true decentralization. We opine that DFL will serve as a practical implementation of federated learning for various IoT-based smart applications such as smart industries and intelligent transportation systems. First, the fundamentals of the DFL are presented. Second, a taxonomy is devised with a qualitative analysis of various DFL schemes. Third, a DFL framework for IoT networks is proposed with a matching theory-based solution. Finally, an outlook on future research directions is presented.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Latif U. Khan (17 papers)
  2. Walid Saad (378 papers)
  3. Zhu Han (431 papers)
  4. Choong Seon Hong (165 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.