Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HOSE-Net: Higher Order Structure Embedded Network for Scene Graph Generation (2008.05156v1)

Published 12 Aug 2020 in cs.CV

Abstract: Scene graph generation aims to produce structured representations for images, which requires to understand the relations between objects. Due to the continuous nature of deep neural networks, the prediction of scene graphs is divided into object detection and relation classification. However, the independent relation classes cannot separate the visual features well. Although some methods organize the visual features into graph structures and use message passing to learn contextual information, they still suffer from drastic intra-class variations and unbalanced data distributions. One important factor is that they learn an unstructured output space that ignores the inherent structures of scene graphs. Accordingly, in this paper, we propose a Higher Order Structure Embedded Network (HOSE-Net) to mitigate this issue. First, we propose a novel structure-aware embedding-to-classifier(SEC) module to incorporate both local and global structural information of relationships into the output space. Specifically, a set of context embeddings are learned via local graph based message passing and then mapped to a global structure based classification space. Second, since learning too many context-specific classification subspaces can suffer from data sparsity issues, we propose a hierarchical semantic aggregation(HSA) module to reduces the number of subspaces by introducing higher order structural information. HSA is also a fast and flexible tool to automatically search a semantic object hierarchy based on relational knowledge graphs. Extensive experiments show that the proposed HOSE-Net achieves the state-of-the-art performance on two popular benchmarks of Visual Genome and VRD.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.