Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Facial Expression Retargeting from Human to Avatar Made Easy (2008.05110v1)

Published 12 Aug 2020 in cs.CV and cs.GR

Abstract: Facial expression retargeting from humans to virtual characters is a useful technique in computer graphics and animation. Traditional methods use markers or blendshapes to construct a mapping between the human and avatar faces. However, these approaches require a tedious 3D modeling process, and the performance relies on the modelers' experience. In this paper, we propose a brand-new solution to this cross-domain expression transfer problem via nonlinear expression embedding and expression domain translation. We first build low-dimensional latent spaces for the human and avatar facial expressions with variational autoencoder. Then we construct correspondences between the two latent spaces guided by geometric and perceptual constraints. Specifically, we design geometric correspondences to reflect geometric matching and utilize a triplet data structure to express users' perceptual preference of avatar expressions. A user-friendly method is proposed to automatically generate triplets for a system allowing users to easily and efficiently annotate the correspondences. Using both geometric and perceptual correspondences, we trained a network for expression domain translation from human to avatar. Extensive experimental results and user studies demonstrate that even nonprofessional users can apply our method to generate high-quality facial expression retargeting results with less time and effort.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube