Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A matrix concentration inequality for products (2008.05104v2)

Published 12 Aug 2020 in math.PR and stat.ML

Abstract: We present a non-asymptotic concentration inequality for the random matrix product \begin{equation}\label{eq:Zn} Z_n = \left(I_d-\alpha X_n\right)\left(I_d-\alpha X_{n-1}\right)\cdots \left(I_d-\alpha X_1\right), \end{equation} where $\left{X_k \right}_{k=1}{+\infty}$ is a sequence of bounded independent random positive semidefinite matrices with common expectation $\mathbb{E}\left[X_k\right]=\Sigma$. Under these assumptions, we show that, for small enough positive $\alpha$, $Z_n$ satisfies the concentration inequality \begin{equation}\label{eq:CTbound} \mathbb{P}\left(\left\Vert Z_n-\mathbb{E}\left[Z_n\right]\right\Vert \geq t\right) \leq 2d2\cdot\exp\left(\frac{-t2}{\alpha \sigma2} \right) \quad \text{for all } t\geq 0, \end{equation} where $\sigma2$ denotes a variance parameter.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.