A matrix concentration inequality for products (2008.05104v2)
Abstract: We present a non-asymptotic concentration inequality for the random matrix product \begin{equation}\label{eq:Zn} Z_n = \left(I_d-\alpha X_n\right)\left(I_d-\alpha X_{n-1}\right)\cdots \left(I_d-\alpha X_1\right), \end{equation} where $\left{X_k \right}_{k=1}{+\infty}$ is a sequence of bounded independent random positive semidefinite matrices with common expectation $\mathbb{E}\left[X_k\right]=\Sigma$. Under these assumptions, we show that, for small enough positive $\alpha$, $Z_n$ satisfies the concentration inequality \begin{equation}\label{eq:CTbound} \mathbb{P}\left(\left\Vert Z_n-\mathbb{E}\left[Z_n\right]\right\Vert \geq t\right) \leq 2d2\cdot\exp\left(\frac{-t2}{\alpha \sigma2} \right) \quad \text{for all } t\geq 0, \end{equation} where $\sigma2$ denotes a variance parameter.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.