Sample-Efficient Training of Robotic Guide Using Human Path Prediction Network (2008.05054v2)
Abstract: Training a robot that engages with people is challenging; it is expensive to directly involve people in the training process, which requires numerous data samples. This paper presents an alternative approach for resolving this problem. We propose a human path prediction network (HPPN) that generates a user's future trajectory based on sequential robot actions and human responses using a recurrent-neural-network structure. Subsequently, an evolution-strategy-based robot training method using only the virtual human movements generated using the HPPN is presented. It is demonstrated that our proposed method permits sample-efficient training of a robotic guide for visually impaired people. By collecting only 1.5 K episodes from real users, we were able to train the HPPN and generate more than 100 K virtual episodes required for training the robot. The trained robot precisely guided blindfolded participants along a target path. Furthermore, using virtual episodes, we investigated a new reward design that prioritizes human comfort during the robot's guidance without incurring additional costs. This sample-efficient training method is expected to be widely applicable to future robots that interact physically with humans.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.