Papers
Topics
Authors
Recent
2000 character limit reached

Distantly Supervised Relation Extraction in Federated Settings (2008.05049v1)

Published 12 Aug 2020 in cs.CL and cs.LG

Abstract: This paper investigates distantly supervised relation extraction in federated settings. Previous studies focus on distant supervision under the assumption of centralized training, which requires collecting texts from different platforms and storing them on one machine. However, centralized training is challenged by two issues, namely, data barriers and privacy protection, which make it almost impossible or cost-prohibitive to centralize data from multiple platforms. Therefore, it is worthy to investigate distant supervision in the federated learning paradigm, which decouples the model training from the need for direct access to the raw data. Overcoming label noise of distant supervision, however, becomes more difficult in federated settings, since the sentences containing the same entity pair may scatter around different platforms. In this paper, we propose a federated denoising framework to suppress label noise in federated settings. The core of this framework is a multiple instance learning based denoising method that is able to select reliable instances via cross-platform collaboration. Various experimental results on New York Times dataset and miRNA gene regulation relation dataset demonstrate the effectiveness of the proposed method.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube