Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

S-vectors and TESA: Speaker Embeddings and a Speaker Authenticator Based on Transformer Encoder (2008.04659v2)

Published 11 Aug 2020 in eess.AS and cs.SD

Abstract: One of the most popular speaker embeddings is x-vectors, which are obtained from an architecture that gradually builds a larger temporal context with layers. In this paper, we propose to derive speaker embeddings from Transformer's encoder trained for speaker classification. Self-attention, on which Transformer's encoder is built, attends to all the features over the entire utterance and might be more suitable in capturing the speaker characteristics in an utterance. We refer to the speaker embeddings obtained from the proposed speaker classification model as s-vectors to emphasize that they are obtained from an architecture that heavily relies on self-attention. Through experiments, we demonstrate that s-vectors perform better than x-vectors. In addition to the s-vectors, we also propose a new architecture based on Transformer's encoder for speaker verification as a replacement for speaker verification based on conventional probabilistic linear discriminant analysis (PLDA). This architecture is inspired by the next sentence prediction task of bidirectional encoder representations from Transformers (BERT), and we feed the s-vectors of two utterances to verify whether they belong to the same speaker. We name this architecture the Transformer encoder speaker authenticator (TESA). Our experiments show that the performance of s-vectors with TESA is better than s-vectors with conventional PLDA-based speaker verification.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube