Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Using Network Embeddings for Improving Network Alignment (2008.04581v1)

Published 11 Aug 2020 in cs.SI

Abstract: Network (or Graph) Alignment Algorithms aims to reveal structural similarities among graphs. In particular Local Network Alignment Algorithms (LNAs) finds local regions of similarity among two or more networks. Such algorithms are in general based on a set of seed nodes that are used to grow an alignment. Almost all LNAs algorithms use as seed nodes a set of vertices based on context information (e.g. a set of biologically related in biological network alignment) and this may cause a bias or a data-circularity problem. More recently, we demonstrated that the use of topological information in the choice of seed nodes may improve the quality of the alignments. We used some common approaches based on global alignment algorithms for capturing topological similarity among nodes. In parallel, it has been demonstrated that the use of network embedding methods (or representation learning), may capture the structural similarity among nodes better than other methods. Therefore we propose to use network embeddings to learn structural similarity among nodes and to use such similarity to improve LNA extendings our previous algorithms. We define a framework for LNA.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)