Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Keypoint Autoencoders: Learning Interest Points of Semantics (2008.04502v1)

Published 11 Aug 2020 in cs.CV

Abstract: Understanding point clouds is of great importance. Many previous methods focus on detecting salient keypoints to identity structures of point clouds. However, existing methods neglect the semantics of points selected, leading to poor performance on downstream tasks. In this paper, we propose Keypoint Autoencoder, an unsupervised learning method for detecting keypoints. We encourage selecting sparse semantic keypoints by enforcing the reconstruction from keypoints to the original point cloud. To make sparse keypoint selection differentiable, Soft Keypoint Proposal is adopted by calculating weighted averages among input points. A downstream task of classifying shape with sparse keypoints is conducted to demonstrate the distinctiveness of our selected keypoints. Semantic Accuracy and Semantic Richness are proposed and our method gives competitive or even better performance than state of the arts on these two metrics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.