Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Boosting Ant Colony Optimization via Solution Prediction and Machine Learning (2008.04213v2)

Published 29 Jul 2020 in cs.NE, cs.AI, and cs.LG

Abstract: This paper introduces an enhanced meta-heuristic (ML-ACO) that combines ML and ant colony optimization (ACO) to solve combinatorial optimization problems. To illustrate the underlying mechanism of our ML-ACO algorithm, we start by describing a test problem, the orienteering problem. In this problem, the objective is to find a route that visits a subset of vertices in a graph within a time budget to maximize the collected score. In the first phase of our ML-ACO algorithm, an ML model is trained using a set of small problem instances where the optimal solution is known. Specifically, classification models are used to classify an edge as being part of the optimal route, or not, using problem-specific features and statistical measures. The trained model is then used to predict the probability that an edge in the graph of a test problem instance belongs to the corresponding optimal route. In the second phase, we incorporate the predicted probabilities into the ACO component of our algorithm, i.e., using the probability values as heuristic weights or to warm start the pheromone matrix. Here, the probability values bias sampling towards favoring those predicted high-quality edges when constructing feasible routes. We have tested multiple classification models including graph neural networks, logistic regression and support vector machines, and the experimental results show that our solution prediction approach consistently boosts the performance of ACO. Further, we empirically show that our ML model trained on small synthetic instances generalizes well to large synthetic and real-world instances. Our approach integrating ML with a meta-heuristic is generic and can be applied to a wide range of optimization problems.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube