Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Depth Quality Aware Salient Object Detection (2008.04159v1)

Published 7 Aug 2020 in cs.CV and cs.LG

Abstract: The existing fusion based RGB-D salient object detection methods usually adopt the bi-stream structure to strike the fusion trade-off between RGB and depth (D). The D quality usually varies from scene to scene, while the SOTA bi-stream approaches are depth quality unaware, which easily result in substantial difficulties in achieving complementary fusion status between RGB and D, leading to poor fusion results in facing of low-quality D. Thus, this paper attempts to integrate a novel depth quality aware subnet into the classic bi-stream structure, aiming to assess the depth quality before conducting the selective RGB-D fusion. Compared with the SOTA bi-stream methods, the major highlight of our method is its ability to lessen the importance of those low-quality, no-contribution, or even negative-contribution D regions during the RGB-D fusion, achieving a much improved complementary status between RGB and D.

Citations (77)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.