Papers
Topics
Authors
Recent
2000 character limit reached

Augmenting Molecular Images with Vector Representations as a Featurization Technique for Drug Classification (2008.03646v1)

Published 9 Aug 2020 in cs.CV and q-bio.BM

Abstract: One of the key steps in building deep learning systems for drug classification and generation is the choice of featurization for the molecules. Previous featurization methods have included molecular images, binary strings, graphs, and SMILES strings. This paper proposes the creation of molecular images captioned with binary vectors that encode information not contained in or easily understood from a molecular image alone. Specifically, we use Morgan fingerprints, which encode higher level structural information, and MACCS keys, which encode yes or no questions about a molecules properties and structure. We tested our method on the HIV dataset published by the Pande lab, which consists of 41,127 molecules labeled by if they inhibit the HIV virus. Our final model achieved a state of the art AUC ROC on the HIV dataset, outperforming all other methods. Moreover, the model converged significantly faster than most other methods, requiring dramatically less computational power than unaugmented images.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.