Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Audio Spoofing Verification using Deep Convolutional Neural Networks by Transfer Learning (2008.03464v1)

Published 8 Aug 2020 in eess.AS and cs.LG

Abstract: Automatic Speaker Verification systems are gaining popularity these days; spoofing attacks are of prime concern as they make these systems vulnerable. Some spoofing attacks like Replay attacks are easier to implement but are very hard to detect thus creating the need for suitable countermeasures. In this paper, we propose a speech classifier based on deep-convolutional neural network to detect spoofing attacks. Our proposed methodology uses acoustic time-frequency representation of power spectral densities on Mel frequency scale (Mel-spectrogram), via deep residual learning (an adaptation of ResNet-34 architecture). Using a single model system, we have achieved an equal error rate (EER) of 0.9056% on the development and 5.32% on the evaluation dataset of logical access scenario and an equal error rate (EER) of 5.87% on the development and 5.74% on the evaluation dataset of physical access scenario of ASVspoof 2019.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.