Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Audio Spoofing Verification using Deep Convolutional Neural Networks by Transfer Learning (2008.03464v1)

Published 8 Aug 2020 in eess.AS and cs.LG

Abstract: Automatic Speaker Verification systems are gaining popularity these days; spoofing attacks are of prime concern as they make these systems vulnerable. Some spoofing attacks like Replay attacks are easier to implement but are very hard to detect thus creating the need for suitable countermeasures. In this paper, we propose a speech classifier based on deep-convolutional neural network to detect spoofing attacks. Our proposed methodology uses acoustic time-frequency representation of power spectral densities on Mel frequency scale (Mel-spectrogram), via deep residual learning (an adaptation of ResNet-34 architecture). Using a single model system, we have achieved an equal error rate (EER) of 0.9056% on the development and 5.32% on the evaluation dataset of logical access scenario and an equal error rate (EER) of 5.87% on the development and 5.74% on the evaluation dataset of physical access scenario of ASVspoof 2019.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.