Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Investigation of Speaker-adaptation methods in Transformer based ASR (2008.03247v2)

Published 7 Aug 2020 in eess.AS, cs.CV, and cs.SD

Abstract: End-to-end models are fast replacing the conventional hybrid models in automatic speech recognition. Transformer, a sequence-to-sequence model, based on self-attention popularly used in machine translation tasks, has given promising results when used for automatic speech recognition. This paper explores different ways of incorporating speaker information at the encoder input while training a transformer-based model to improve its speech recognition performance. We present speaker information in the form of speaker embeddings for each of the speakers. We experiment using two types of speaker embeddings: x-vectors and novel s-vectors proposed in our previous work. We report results on two datasets a) NPTEL lecture database and b) Librispeech 500-hour split. NPTEL is an open-source e-learning portal providing lectures from top Indian universities. We obtain improvements in the word error rate over the baseline through our approach of integrating speaker embeddings into the model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.