Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Approximating Constraint Satisfaction Problems Symmetrically (2008.03115v1)

Published 3 Aug 2020 in cs.LO and cs.CC

Abstract: This thesis investigates the extent to which the optimal value of a constraint satisfaction problem (CSP) can be approximated by some sentence of fixed point logic with counting (FPC). It is known that, assuming $\mathsf{P} \neq \mathsf{NP}$ and the Unique Games Conjecture, the best polynomial time approximation algorithm for any CSP is given by solving and rounding a specific semidefinite programming relaxation. We prove an analogue of this result for algorithms that are definable as FPC-interpretations, which holds without the assumption that $\mathsf{P} \neq \mathsf{NP}$. While we are not able to drop (an FPC-version of) the Unique Games Conjecture as an assumption, we do present some partial results toward proving it. Specifically, we give a novel construction which shows that, for all $\alpha > 0$, there exists a positive integer $q = \text{poly}(\frac{1}{\alpha})$ such that no there is no FPC-interpretation giving an $\alpha$-approximation of Unique Games on a label set of size $q$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.