Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Polynomial-time algorithms for Multimarginal Optimal Transport problems with structure (2008.03006v4)

Published 7 Aug 2020 in math.OC, cs.DS, cs.LG, cs.NA, and math.NA

Abstract: Multimarginal Optimal Transport (MOT) has attracted significant interest due to applications in machine learning, statistics, and the sciences. However, in most applications, the success of MOT is severely limited by a lack of efficient algorithms. Indeed, MOT in general requires exponential time in the number of marginals k and their support sizes n. This paper develops a general theory about what "structure" makes MOT solvable in poly(n,k) time. We develop a unified algorithmic framework for solving MOT in poly(n,k) time by characterizing the "structure" that different algorithms require in terms of simple variants of the dual feasibility oracle. This framework has several benefits. First, it enables us to show that the Sinkhorn algorithm, which is currently the most popular MOT algorithm, requires strictly more structure than other algorithms do to solve MOT in poly(n,k) time. Second, our framework makes it much simpler to develop poly(n,k) time algorithms for a given MOT problem. In particular, it is necessary and sufficient to (approximately) solve the dual feasibility oracle -- which is much more amenable to standard algorithmic techniques. We illustrate this ease-of-use by developing poly(n,k) time algorithms for three general classes of MOT cost structures: (1) graphical structure; (2) set-optimization structure; and (3) low-rank plus sparse structure. For structure (1), we recover the known result that Sinkhorn has poly(n,k) runtime; moreover, we provide the first poly(n,k) time algorithms for computing solutions that are exact and sparse. For structures (2)-(3), we give the first poly(n,k) time algorithms, even for approximate computation. Together, these three structures encompass many -- if not most -- current applications of MOT.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.