Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysing Risk of Coronary Heart Disease through Discriminative Neural Networks (2008.02731v1)

Published 17 Jun 2020 in cs.LG and stat.ML

Abstract: The application of data mining, machine learning and artificial intelligence techniques in the field of diagnostics is not a new concept, and these techniques have been very successfully applied in a variety of applications, especially in dermatology and cancer research. But, in the case of medical problems that involve tests resulting in true or false (binary classification), the data generally has a class imbalance with samples majorly belonging to one class (ex: a patient undergoes a regular test and the results are false). Such disparity in data causes problems when trying to model predictive systems on the data. In critical applications like diagnostics, this class imbalance cannot be overlooked and must be given extra attention. In our research, we depict how we can handle this class imbalance through neural networks using a discriminative model and contrastive loss using a Siamese neural network structure. Such a model does not work on a probability-based approach to classify samples into labels. Instead it uses a distance-based approach to differentiate between samples classified under different labels. The code is available at https://tinyurl.com/DiscriminativeCHD/

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.