Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning based Local Planner for UAV Obstacle Avoidance using Demonstration Data (2008.02521v1)

Published 6 Aug 2020 in cs.RO

Abstract: In this paper, a deep reinforcement learning (DRL) method is proposed to address the problem of UAV navigation in an unknown environment. However, DRL algorithms are limited by the data efficiency problem as they typically require a huge amount of data before they reach a reasonable performance. To speed up the DRL training process, we developed a novel learning framework which combines imitation learning and reinforcement learning and building upon Twin Delayed DDPG (TD3) algorithm. We newly introduced both policy and Q-value network are learned using the expert demonstration during the imitation phase. To tackle the distribution mismatch problem transfer from imitation to reinforcement learning, both TD-error and decayed imitation loss are used to update the pre-trained network when start interacting with the environment. The performances of the proposed algorithm are demonstrated on the challenging 3D UAV navigation problem using depth cameras and sketched in a variety of simulation environments.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.