Papers
Topics
Authors
Recent
2000 character limit reached

Meta Continual Learning via Dynamic Programming (2008.02219v2)

Published 5 Aug 2020 in cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: Meta continual learning algorithms seek to train a model when faced with similar tasks observed in a sequential manner. Despite promising methodological advancements, there is a lack of theoretical frameworks that enable analysis of learning challenges such as generalization and catastrophic forgetting. To that end, we develop a new theoretical approach for meta continual learning~(MCL) where we mathematically model the learning dynamics using dynamic programming, and we establish conditions of optimality for the MCL problem. Moreover, using the theoretical framework, we derive a new dynamic-programming-based MCL method that adopts stochastic-gradient-driven alternating optimization to balance generalization and catastrophic forgetting. We show that, on MCL benchmark data sets, our theoretically grounded method achieves accuracy better than or comparable to that of existing state-of-the-art methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.