Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

One word at a time: adversarial attacks on retrieval models (2008.02197v1)

Published 5 Aug 2020 in cs.IR

Abstract: Adversarial examples, generated by applying small perturbations to input features, are widely used to fool classifiers and measure their robustness to noisy inputs. However, little work has been done to evaluate the robustness of ranking models through adversarial examples. In this work, we present a systematic approach of leveraging adversarial examples to measure the robustness of popular ranking models. We explore a simple method to generate adversarial examples that forces a ranker to incorrectly rank the documents. Using this approach, we analyze the robustness of various ranking models and the quality of perturbations generated by the adversarial attacker across two datasets. Our findings suggest that with very few token changes (1-3), the attacker can yield semantically similar perturbed documents that can fool different rankers into changing a document's score, lowering its rank by several positions.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.