Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

One word at a time: adversarial attacks on retrieval models (2008.02197v1)

Published 5 Aug 2020 in cs.IR

Abstract: Adversarial examples, generated by applying small perturbations to input features, are widely used to fool classifiers and measure their robustness to noisy inputs. However, little work has been done to evaluate the robustness of ranking models through adversarial examples. In this work, we present a systematic approach of leveraging adversarial examples to measure the robustness of popular ranking models. We explore a simple method to generate adversarial examples that forces a ranker to incorrectly rank the documents. Using this approach, we analyze the robustness of various ranking models and the quality of perturbations generated by the adversarial attacker across two datasets. Our findings suggest that with very few token changes (1-3), the attacker can yield semantically similar perturbed documents that can fool different rankers into changing a document's score, lowering its rank by several positions.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.