Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Persistent Homology in $\ell_{\infty}$ Metric (2008.02071v3)

Published 5 Aug 2020 in cs.CG and math.AT

Abstract: Proximity complexes and filtrations are central constructions in topological data analysis. Built using distance functions, or more generally metrics, they are often used to infer connectivity information from point clouds. Here we investigate proximity complexes and filtrations built over the Chebyshev metric, also known as the maximum metric or $\ell_{\infty}$ metric, rather than the classical Euclidean metric. Somewhat surprisingly, the $\ell_{\infty}$ case has not been investigated thoroughly. In this paper, we examine a number of classical complexes under this metric, including the \v{C}ech, Vietoris-Rips, and Alpha complexes. We define two new families of flag complexes, which we call the Alpha flag and Minibox complexes, and prove their equivalence to \v{C}ech complexes in homological degrees zero and one. Moreover, we provide algorithms for finding Minibox edges of two, three, and higher-dimensional points. Finally, we present computational experiments on random points, which shows that Minibox filtrations can often be used to speed up persistent homology computations in homological degrees zero and one by reducing the number of simplices in the filtration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.