Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 167 tok/s Pro
GPT OSS 120B 400 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Persistent Homology in $\ell_{\infty}$ Metric (2008.02071v3)

Published 5 Aug 2020 in cs.CG and math.AT

Abstract: Proximity complexes and filtrations are central constructions in topological data analysis. Built using distance functions, or more generally metrics, they are often used to infer connectivity information from point clouds. Here we investigate proximity complexes and filtrations built over the Chebyshev metric, also known as the maximum metric or $\ell_{\infty}$ metric, rather than the classical Euclidean metric. Somewhat surprisingly, the $\ell_{\infty}$ case has not been investigated thoroughly. In this paper, we examine a number of classical complexes under this metric, including the \v{C}ech, Vietoris-Rips, and Alpha complexes. We define two new families of flag complexes, which we call the Alpha flag and Minibox complexes, and prove their equivalence to \v{C}ech complexes in homological degrees zero and one. Moreover, we provide algorithms for finding Minibox edges of two, three, and higher-dimensional points. Finally, we present computational experiments on random points, which shows that Minibox filtrations can often be used to speed up persistent homology computations in homological degrees zero and one by reducing the number of simplices in the filtration.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.