Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

F2GAN: Fusing-and-Filling GAN for Few-shot Image Generation (2008.01999v2)

Published 5 Aug 2020 in cs.CV

Abstract: In order to generate images for a given category, existing deep generative models generally rely on abundant training images. However, extensive data acquisition is expensive and fast learning ability from limited data is necessarily required in real-world applications. Also, these existing methods are not well-suited for fast adaptation to a new category. Few-shot image generation, aiming to generate images from only a few images for a new category, has attracted some research interest. In this paper, we propose a Fusing-and-Filling Generative Adversarial Network (F2GAN) to generate realistic and diverse images for a new category with only a few images. In our F2GAN, a fusion generator is designed to fuse the high-level features of conditional images with random interpolation coefficients, and then fills in attended low-level details with non-local attention module to produce a new image. Moreover, our discriminator can ensure the diversity of generated images by a mode seeking loss and an interpolation regression loss. Extensive experiments on five datasets demonstrate the effectiveness of our proposed method for few-shot image generation.

Citations (82)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube