Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Future Vector Enhanced LSTM Language Model for LVCSR (2008.01832v1)

Published 31 Jul 2020 in eess.AS, cs.CL, and cs.SD

Abstract: LLMs (LM) play an important role in large vocabulary continuous speech recognition (LVCSR). However, traditional LLMs only predict next single word with given history, while the consecutive predictions on a sequence of words are usually demanded and useful in LVCSR. The mismatch between the single word prediction modeling in trained and the long term sequence prediction in read demands may lead to the performance degradation. In this paper, a novel enhanced long short-term memory (LSTM) LM using the future vector is proposed. In addition to the given history, the rest of the sequence will be also embedded by future vectors. This future vector can be incorporated with the LSTM LM, so it has the ability to model much longer term sequence level information. Experiments show that, the proposed new LSTM LM gets a better result on BLEU scores for long term sequence prediction. For the speech recognition rescoring, although the proposed LSTM LM obtains very slight gains, the new model seems obtain the great complementary with the conventional LSTM LM. Rescoring using both the new and conventional LSTM LMs can achieve a very large improvement on the word error rate.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube