Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lower Bounds on Circuit Depth of the Quantum Approximate Optimization Algorithm (2008.01820v2)

Published 4 Aug 2020 in quant-ph, cs.CC, and math.OC

Abstract: The quantum approximate optimization algorithm (QAOA) is a method of approximately solving combinatorial optimization problems. While QAOA is developed to solve a broad class of combinatorial optimization problems, it is not clear which classes of problems are best suited for it. One factor in demonstrating quantum advantage is the relationship between a problem instance and the circuit depth required to implement the QAOA method. As errors in NISQ devices increases exponentially with circuit depth, identifying lower bounds on circuit depth can provide insights into when quantum advantage could be feasible. Here, we identify how the structure of problem instances can be used to identify lower bounds for circuit depth for each iteration of QAOA and examine the relationship between problem structure and the circuit depth for a variety of combinatorial optimization problems including MaxCut and MaxIndSet. Specifically, we show how to derive a graph, $G$, that describes a general combinatorial optimization problem and show that the depth of circuit is at least the chromatic index of $G$. By looking at the scaling of circuit depth, we argue that MaxCut, MaxIndSet, and some instances of Vertex Covering and Boolean satisifiability problems are suitable for QAOA approaches while Knapsack and Traveling Sales Person problems are not.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.