Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast and Near-Optimal Diagonal Preconditioning (2008.01722v2)

Published 4 Aug 2020 in math.OC, cs.DS, cs.LG, and stat.ML

Abstract: The convergence rates of iterative methods for solving a linear system $\mathbf{A} x = b$ typically depend on the condition number of the matrix $\mathbf{A}$. Preconditioning is a common way of speeding up these methods by reducing that condition number in a computationally inexpensive way. In this paper, we revisit the decades-old problem of how to best improve $\mathbf{A}$'s condition number by left or right diagonal rescaling. We make progress on this problem in several directions. First, we provide new bounds for the classic heuristic of scaling $\mathbf{A}$ by its diagonal values (a.k.a. Jacobi preconditioning). We prove that this approach reduces $\mathbf{A}$'s condition number to within a quadratic factor of the best possible scaling. Second, we give a solver for structured mixed packing and covering semidefinite programs (MPC SDPs) which computes a constant-factor optimal scaling for $\mathbf{A}$ in $\widetilde{O}(\text{nnz}(\mathbf{A}) \cdot \text{poly}(\kappa\star))$ time; this matches the cost of solving the linear system after scaling up to a $\widetilde{O}(\text{poly}(\kappa\star))$ factor. Third, we demonstrate that a sufficiently general width-independent MPC SDP solver would imply near-optimal runtimes for the scaling problems we consider, and natural variants concerned with measures of average conditioning. Finally, we highlight connections of our preconditioning techniques to semi-random noise models, as well as applications in reducing risk in several statistical regression models.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com