Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Fast and Near-Optimal Diagonal Preconditioning (2008.01722v2)

Published 4 Aug 2020 in math.OC, cs.DS, cs.LG, and stat.ML

Abstract: The convergence rates of iterative methods for solving a linear system $\mathbf{A} x = b$ typically depend on the condition number of the matrix $\mathbf{A}$. Preconditioning is a common way of speeding up these methods by reducing that condition number in a computationally inexpensive way. In this paper, we revisit the decades-old problem of how to best improve $\mathbf{A}$'s condition number by left or right diagonal rescaling. We make progress on this problem in several directions. First, we provide new bounds for the classic heuristic of scaling $\mathbf{A}$ by its diagonal values (a.k.a. Jacobi preconditioning). We prove that this approach reduces $\mathbf{A}$'s condition number to within a quadratic factor of the best possible scaling. Second, we give a solver for structured mixed packing and covering semidefinite programs (MPC SDPs) which computes a constant-factor optimal scaling for $\mathbf{A}$ in $\widetilde{O}(\text{nnz}(\mathbf{A}) \cdot \text{poly}(\kappa\star))$ time; this matches the cost of solving the linear system after scaling up to a $\widetilde{O}(\text{poly}(\kappa\star))$ factor. Third, we demonstrate that a sufficiently general width-independent MPC SDP solver would imply near-optimal runtimes for the scaling problems we consider, and natural variants concerned with measures of average conditioning. Finally, we highlight connections of our preconditioning techniques to semi-random noise models, as well as applications in reducing risk in several statistical regression models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: