Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MIRNet: Learning multiple identities representations in overlapped speech (2008.01698v2)

Published 4 Aug 2020 in eess.AS and cs.SD

Abstract: Many approaches can derive information about a single speaker's identity from the speech by learning to recognize consistent characteristics of acoustic parameters. However, it is challenging to determine identity information when there are multiple concurrent speakers in a given signal. In this paper, we propose a novel deep speaker representation strategy that can reliably extract multiple speaker identities from an overlapped speech. We design a network that can extract a high-level embedding that contains information about each speaker's identity from a given mixture. Unlike conventional approaches that need reference acoustic features for training, our proposed algorithm only requires the speaker identity labels of the overlapped speech segments. We demonstrate the effectiveness and usefulness of our algorithm in a speaker verification task and a speech separation system conditioned on the target speaker embeddings obtained through the proposed method.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube