Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

MIRNet: Learning multiple identities representations in overlapped speech (2008.01698v2)

Published 4 Aug 2020 in eess.AS and cs.SD

Abstract: Many approaches can derive information about a single speaker's identity from the speech by learning to recognize consistent characteristics of acoustic parameters. However, it is challenging to determine identity information when there are multiple concurrent speakers in a given signal. In this paper, we propose a novel deep speaker representation strategy that can reliably extract multiple speaker identities from an overlapped speech. We design a network that can extract a high-level embedding that contains information about each speaker's identity from a given mixture. Unlike conventional approaches that need reference acoustic features for training, our proposed algorithm only requires the speaker identity labels of the overlapped speech segments. We demonstrate the effectiveness and usefulness of our algorithm in a speaker verification task and a speech separation system conditioned on the target speaker embeddings obtained through the proposed method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.