List $k$-Colouring $P_t$-Free Graphs: a Mim-width Perspective (2008.01590v2)
Abstract: A colouring of a graph $G=(V,E)$ is a mapping $c\colon V\to {1,2,\ldots}$ such that $c(u)\neq c(v)$ for every two adjacent vertices $u$ and $v$ of $G$. The {\sc List $k$-Colouring} problem is to decide whether a graph $G=(V,E)$ with a list $L(u)\subseteq {1,\ldots,k}$ for each $u\in V$ has a colouring $c$ such that $c(u)\in L(u)$ for every $u\in V$. Let $P_t$ be the path on $t$ vertices and let $K_{1,s}1$ be the graph obtained from the $(s+1)$-vertex star $K_{1,s}$ by subdividing each of its edges exactly once.Recently, Chudnovsky, Spirkl and Zhong (DM 2020) proved that List $3$-Colouring is polynomial-time solvable for $(K_{1,s}1,P_t)$-free graphs for every $t\geq 1$ and $s\geq 1$. We generalize their result to List $k$-Colouring for every $k\geq 1$. Our result also generalizes the known result that for every $k\geq 1$ and $s\geq 0$, List $k$-Colouring is polynomial-time solvable for $(sP_1+P_5)$-free graphs, which was proven for $s=0$ by Ho`ang, Kami\'nski, Lozin, Sawada, and Shu (Algorithmica 2010) and for every $s\geq 1$ by Couturier, Golovach, Kratsch and Paulusma (Algorithmica 2015). We show our result by proving boundedness of an underlying width parameter. Namely, we show that for every $k\geq 1$, $s\geq 1$, $t\geq 1$, the class of $(K_k,K_{1,s}1,P_t)$-free graphs has bounded mim-width and that a corresponding branch decomposition is "quickly computable" for these graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.