Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neuromorphic Computing for Content-based Image Retrieval (2008.01380v2)

Published 4 Aug 2020 in cs.NE, cs.CV, and cs.LG

Abstract: Neuromorphic computing mimics the neural activity of the brain through emulating spiking neural networks. In numerous machine learning tasks, neuromorphic chips are expected to provide superior solutions in terms of cost and power efficiency. Here, we explore the application of Loihi, a neuromorphic computing chip developed by Intel, for the computer vision task of image retrieval. We evaluated the functionalities and the performance metrics that are critical in content-based visual search and recommender systems using deep-learning embeddings. Our results show that the neuromorphic solution is about 2.5 times more energy-efficient compared with an ARM Cortex-A72 CPU and 12.5 times more energy-efficient compared with NVIDIA T4 GPU for inference by a lightweight convolutional neural network without batching while maintaining the same level of matching accuracy. The study validates the potential of neuromorphic computing in low-power image retrieval, as a complementary paradigm to the existing von Neumann architectures.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.